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abstract: The extent to which competitive interactions and niche
differentiation structure communities has been highly controversial.
To quantify evidence for key features of plant community structure,
I recharacterized published data from interaction experiments as net-
works of competitive and facilitative interactions. I measured the net-
work structure of 31 woody and herbaceous communities, including
the intensity, distribution, and diversity of interactions at the species-
pair and community levels to determine the generality of competition,
winner-loser relationships, and unequal interaction allocation. I devel-
oped novel methodology using meta-analysis to incorporate interac-
tion uncertainty into estimates of structural metrics among indepen-
dent networks. Plant communities were competitive, but intraspecific
interactions were sometimes more intense than interspecific interac-
tions. On the whole, interactions were imbalanced and communities
were transitive. However, facilitation, balanced interactions, and in-
transitivity were common in individual communities. Synthesizing net-
work metrics using meta-analysis is an original approach with which to
generalize community structure in a systematic way.

Keywords: networks, competition, facilitation, plant communities,
meta-analysis, interaction uncertainty.

Introduction

An ecological community, defined as a set of interacting
species or individuals connected by the flow of resources
or interactions, is well suited to representation as a network,
which provides a quantitative estimate of the complexity
and structure of the community. Network metrics approx-
imate the general architecture of a certain type of system,
meaning that aspects of the structure of complex networks
can be summarized by a few key values. Plant communities
have recently been evaluated as networks (Soliveres et al.
2015; Godoy et al. 2017; Stouffer et al. 2018), but the net-

work architecture of plant communities across a variety
of species combinations and habitats has not been previ-
ously characterized. Competition and facilitation are both
prominent forces, often operating simultaneously, that struc-
ture plant communities (Callaway and Walker 1997). Cur-
rent understanding about the nature of plant interactions
is composed of interpretations from isolated pairwise exper-
iments. With a network approach, it is possible to quantita-
tively estimate structure at the community level, for example,
competition/facilitation intensity, interaction imbalance,
community transitivity, and the distribution of species’ ef-
fects. I developed a meta-analytic approach incorporating
interaction uncertainty to synthesize network structural met-
rics in order to quantitatively estimate plant community
structure using experimental studies of woody and herba-
ceous plant interactions in greenhouses, gardens, and fields.
I determined the prevalence and intensity of competition

and facilitation within and among plant communities, in-
teractions linked to community structure and dynamics
(Connell and Slatyer 1977; Allesina and Levine 2011; Sol-
iveres et al. 2015). I also determined whether intraspecific
interactions were stronger than interspecific interactions
in these communities, a phenomenon associated with the
maintenance of species richness in coexistence theory. I
measured the effects of competitive and facilitative additive
indirect interactions in plant communities. In a competitive
interaction between two species, competition from a third
species may benefit the first species. This phenomenon, in-
direct facilitation, may be important for the maintenance
of species richness in plant communities (Levine 1999; Cal-
laway and Pennings 2000).
I measured interaction imbalance in plant communities

using a network approach. Imbalance occurs when one spe-
cies has a strong effect on the other with little reciprocal
effect. Imbalance is expected when plants with different
resource-capturing abilities compete (Harper 1977) and can
lead to competitive exclusion (Weiner 1990). Scaling up to
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the community level, I estimated whether and to what ex-
tent communities are hierarchical, or transitive. In transitive
plant communities, species are strictly ranked by their abil-
ity to outcompete species of lower rank. Transitivity has
been observed in many studies of plant communities (e.g.,
Miller and Werner 1987; Panetta and Randall 1993; Rox-
burgh and Wilson 2000), though transitivity ends in com-
petitive exclusion of all but the dominant species in the ab-
sence of external forces. Determining whether winner-loser
relationships exist at the interaction level (imbalance) or the
community level (transitivity) is important for understand-
ing andmodeling communitydynamics, anddeviations from
strict winner-loser patterns could promote species coexis-
tence through internal structure rather than external forces
(Kerr et al. 2002; Laird and Schamp 2006, 2008; Allesina and
Levine 2011).

Adopting a network framework to describe plant com-
munities allows for structural comparisons with other real-
world (empirical rather than theoretical) networks. For ex-
ample, trophic networks (Dunne et al. 2002) andmutualistic
networks (Jordano et al. 2003), as well as nonbiological net-
works like the World Wide Web (Adamic and Huberman
2000), have distributions of node effects characterized by a
few nodes with strong effects andmany nodes with weak ef-
fects on the system (they are right skewed). In many net-
works, this pattern is evenmore exaggerated (they are heavy
tailed).Also, thediversityof plant interactions, or theunifor-
mity of species’ effects, can be compared to other networks
as weighted connectance. This metric is related to measures
of the uniformity of biomass flux in trophic networks (Ber-
sier et al. 2002) or the degree of specialization in mutualis-
tic networks (Blüthgen et al. 2006, 2007), in which species’
effects can be uniform (generalists) or nonuniform (special-
ists). Plant communities might be expected to have higher-
weighted connectances relative to previously studied net-
works, as plants likely compete with all neighboring species
to some degree, given that all plants share similar resource
requirements.

I conducted a systematic review to identify greenhouse,
garden, and field experiments that have measured pairwise
interactions in woody and herbaceous plant communities.
I used plant performance data from each study to create
plant interaction networks and calculate network metrics
among all studies as well as grouped by experimental design
and community characteristics. Networkmetrics were com-
bined using meta-analytic methods that incorporate inter-
action uncertainty. By synthesizing plant interaction net-
works, I predicted that (1) species’ effects on the community
were competitive on average; (2) species’ indirect effects on
the community were less competitive than their direct ef-
fects; (3) plant communities were structured bywinner-loser
relationships, in which reciprocal interactions were imbal-
anced and communities were transitive; (4) plant interaction

networks had higher-weighted connectance than currently
described networks; and (5) the distributions of interactions
were right skewed, or characterized by a few strongly inter-
acting species and many weakly interacting species.

Methods

Systematic Review

I searched the literature for studies measuring pairwise in-
teractions in plant communities using the Web of Science
database onMarch 3, 2016, and refined the search to English
manuscripts in relevant research areas, yielding 2,032 stud-
ies (for the search phrase and PRISMA flow diagram, see the
appendix and fig. A1; the appendix, including figs. A1–A3,
is available online). I first screened titles and abstracts and
then full articles, excluding studies if they failed to meet
any of the following inclusion criteria: (1) the study includes
at least three species, (2) the study species are seed-bearing
plants, (3) all pairwise interactions that occurred in the com-
munity were measured, (4) plant performance measure-
ments in the presence of neighbors were reported, and (5) the
study includes new data. I found 30 studies with sufficient
data and data from my own fieldwork (methods in the ap-
pendix) to include in the meta-analysis. These 31 studies
ranged in species number from three to 10 species, with a
mean of 4.6 species.

Constructing Networks from Extracted Data

In plant interaction networks, nodes are species and con-
nections (edges) are interactions. Edges are the intensity
of the interaction of neighbor species j on target species i.
For each study, I used extracted data on the performance
of plants (usually biomass) in pairwise combinations to cal-
culate interaction indexes that represented edge intensities
(mij). In order to be able to compare networks with diverse
species, locations, and experimental designs, I selected a
single interaction index to calculate edges in all networks.
Relative interaction intensity (RII) is an index with desir-
able properties: it is symmetric around zero, bounded be-
tween 21 and 1, and can be used to quantify both compe-
tition and facilitation (Armas et al. 2004). Negative values
of RII represent competition, while positive values of RII
represent facilitation. In 27 of the 31 networks, RII was
calculated using plant performance of target individuals
in interspecific mixtures relative to performance in mono-
cultures (table 1). For studies that included true control
treatments with a single target individual and no neighbors
(n p 15), RII was calculated using plant performance of
target individuals in mixtures/monocultures relative to the
true control treatment (table 1). For 11 studies, RII was cal-
culated using both methods (additional details in the appen-
dix). The interpretation of competition and facilitation is
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different between the two types of control treatment; that
is, with a monoculture control, facilitation means that the
target species had increased performance in an interspecific
combination relative to an intraspecific combination, while
with a true control, the target species had increased perfor-
mance in an interspecific combination relative to growing
alone. On each network, I calculated a variety of metrics,
which characterize the structure of the community in ways
comparable both within plant communities and across other
types of communities.

Network Metrics

Out-strength is a measure of a species’ effect on other spe-
cies in the community, and in-strength is a measure of the
community’s effect on a species. In-strength is calculated as
the sum of all direct interactions from all other species in a
network toward species i (

P
j,j(imij) and out-strength as the

sum of all interactions from species i toward all other spe-
cies (

P
j,j(imji). Competitive strengths are less than zero and

facilitative strengths greater than zero. I calculated the mean
strength for all species in each network, standardizing by
species richness, to quantify the net magnitude of the inter-
actions in each community.

I also calculatedmean indirect interaction effects—or the
average of the direct effects of neighbor species on target
species weighted by the interactions one step removed from
the direct interaction—assuming no higher-order interac-
tions (see appendix). Interactions between species do not oc-
cur in isolation, and indirect effects give an estimate of how
other interactions in the network could influence direct in-
teractions. I calculated indirect effects on all species in a net-
work and the mean indirect effect for each network.

I quantified the imbalance of interactions in plant com-
munities as the difference in interaction strength between
reciprocal interactions, or the absolute difference between

mij and mji. Larger differences represent more imbalanced
interactions (the maximum possible imbalance is equal to
the range of RII, 2.0). I then calculated the mean of all inter-
action imbalances in a network. I also measured the mean
percentage of asymmetric interactions in each network (sensu
Keddy and Shipley 1989), where an asymmetric interaction
occurs if mij 1 0 and mji ! 0, implying that species i—
which experiences stronger intraspecific competition rela-
tive to interspecific competition with species j—benefits
from the interaction, while species j—which experiences
stronger interspecific competition with species i relative to
intraspecific competition—is harmed by the interaction.
Asymmetry was calculated only for networks with interac-
tions measured relative to monoculture.
I quantified transitivity in each network using the relative

intransitivity (RI) index (Laird and Schamp 2006). In a
transitive network, species can be ranked by their ability
to outcompete all lower-ranking species, or form a hierar-
chy. In an intransitive network, species deviate from a hier-
archy. To calculate this index, the network is converted to a
binary competitive outcomes matrix, where a 1 means the
column species outcompetes the row species. The variance
of column sums from the matrix is then calculated. Tran-
sitive networks have high variance (one column species
outcompetes all row species, one outcompetes all but one,
etc.), and intransitive networks have low variance. From
the competitive outcomes matrix, the RI index is calculated
as 12 (varobs 2 varmin)=(varmax 2 varmin), where varobs is the
variance of column sums, and varmin and varmax are themini-
mum and maximum possible variances of column sums of
a competitive outcomes matrix with the same number of
species (Laird and Schamp 2008). An RI index of 0 describes
a completely transitive community, and 1 describes a maxi-
mally intransitive community.
I calculated weighted connectance in each network, the

density of edges each weighted by the Shannon diversity
of interactions per species. In networks with the same den-
sity of interactions, weighted connectance is higher if each
species’ interactions aremore uniform in intensity.Weighted
connectance was calculated as in Bersier et al. (2002; see ap-
pendix).Weighted connectance was calculated on networks
consisting of the absolute value of interaction intensities, as
well as on networks considering only competitive interac-
tions (i.e., removing facilitative interactions from each net-
work) and networks considering only facilitative interactions.
Additional analyses are detailed in the supplemental PDF,

including determining the difference in species’ effects on the
community between invasive and native species, species with
C4 and C3 photosynthetic pathways, and nitrogen-fixing and
non-nitrogen-fixing species; the conservation of species’ roles
across multiple communities; network structure under dif-
ferent abiotic conditions; and whether interactions in net-
works are additive.

Table 1: Formulae for the relative interaction index (RII)

Formula Variables

Calculated for studies
with monoculture
treatments
(np 27)

mij p
Pmixij

2Pmonoii

Pmixij
1Pmonoii

P p plant perfor-
mance; mono,
mix p plants
growing in
monoculture or
mixture,
respectively

Calculated for studies
with true control
treatments only
(np 15)

mij p
Pmixij

2Pctrli

Pmixij
1Pctrli

ctrl p plant grow-
ing alone

Note: RII is calculated as the interaction intensity (mij) for each plant in-
teraction in the networks, where mij is a measure of the effect of species j on
species i.
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Meta-analysis

To generalize the structure of plant communities, I com-
bined the network metrics from each network using a novel
meta-analytic approach. In this approach, I incorporated
multiple levels of variation from within studies and among
studies. From each study, I extracted an estimate of variance
for the metric of plant performance in each pairwise plant
species interaction. For two studies that were missing es-
timates of variation in plant performance, I imputed the
standard deviation from studies with complete data using
a Bayesian gamma generalized linear model (methods in
appendix).

As I used mostly published data in this study, I did not
have the raw data necessary to construct a likelihood func-
tion of plant performance. Instead, I used the estimates of
the mean and variance of plant performance from the study
to generate simulated data (Bolker et al. 2013; Gimenez
et al. 2014). Plant performance of species i interacting with
species j, Pij, was modeled as a gamma variate. Shape (a)
and rate (t) were estimated using moment matching with
the sample mean and variance of plant performance ex-
tracted from the study. Simulations were conducted in the
Markov-chain Monte Carlo (MCMC) sampling software
JAGS (Plummer 2003), simulating 1,000 plant performance
values for each pairwise interaction. Increasing the simula-
tion size did not appreciably change the results.

To estimate the variance of networkmetrics, the simulated
data were used in a Bayesian bootstrap (Rubin 1981) imple-
mented with the R package bayesboot (Bååth 2016) to gener-
ate the posterior probability distribution of the network
metric. The posterior weights of the simulated data were
uniform Dirichlet distributed with the same number of di-
mensions as the sample size from the study. Bayesian boot-
strap samples weighted by probabilities from the uniform
Dirichlet distribution are nonparametric approximations of
the distribution of the networkmetric. The bootstrapped plant
performance data were used to calculate RIIs for pairwise
interactions, forming a bootstrapped network of the inter-
actions in the community. I then calculated all network
metrics (mean in-strength and out-strength, transitivity, etc.)
on the bootstrapped network. This was iterated 10,000 times
to create a bootstrapped distribution of each networkmetric.
The variance for each metric was estimated using the vari-
ance of the bootstrapped distribution.

I fit Bayesian random effects normally distributed meta-
analytic models for each network metric, where estimates
from each network were pooled toward a common mean.
I used noninformative priors; the prior for the grand mean
effect size was normally distributed, centered at zero with a
precision of 0.001, and the prior for among-network preci-
sion was gamma distributed with shape and rate of 0.001.
Groupwise meta-analyses were also fit, with separate means

for each experimental setting (greenhouse, garden, or field),
habitat (communities from grassland habitats vs. all other
habitats), growth habit (all species herbaceous or at least
some species woody), and plant age (all juveniles or at least
some adults). For groupwise models, the noninformative
priors for each mean were normal distributions centered at
zero with a precision of 0.001. Models for metrics RI and
weighted connectance had truncated normal priors formean
effect size, bounded between 0 and 1.
All models were run with MCMC sampling in the pro-

gram JAGS using the R2jags package (Su and Yajima 2015)
for R version 3.3.1 (R Core Team 2015), with three parallel
chains of 500,000 draws from the posterior, discarding the
first 50,000 as burn-in and sampling every 10 iterations.
(Code for running all analyses is available in a supple-
mentary zip file.)1 Convergence was determined using a
Gelman-Rubin diagnostic !1.1 and effective sample size
11,000 (Gelman and Rubin 1992). Effect sizes were consid-
ered significant if 95% credible intervals (CRIs) did not in-
clude zero, and groupwise differences in effect size were
considered significant when 95% CRIs did not overlap. A
Bayesian principal components analysis was performed on
standardizedmean estimates of networkmetrics from all net-
works using the package bPCA (https://github.com/petrkeil
/bPCA) with noninformative priors, normal distributions for
means, and an inverse Wishart distribution for the covari-
ance matrix. In this method, the standardized data are fit
to a multivariate normal distribution, and the eigenvalues,
scores, and loadings are estimated given the covariance ma-
trix from the multivariate normal distribution.

Distributions of Interactions

I fit symmetric/skewed and light-tailed/heavy-tailed mod-
els to the distributions of in-strengths and out-strengths.
As the networks in this study generally had few species, I
fit the distributions of in-strengths and out-strengths only
for networks with five or more species. In-strengths and
out-strengths for each network were fit to normal, expo-
nential, lognormal, and Pareto distributions (the Pareto is
a power law distribution). The normal distribution is sym-
metric with light tails, the exponential distribution is right
skewed with light tails, and the lognormal and Pareto distri-
butions are right skewed with heavy tails. The Pareto distri-
bution has heavier tails relative to the lognormal distribu-
tion. For location parameters, noninformative normal priors
centered at 0 with a standard deviation of 106 were used,
and for shape and scale parameters, noninformative uni-
form priors with bounds between 2106 and 106 or 0 and
106 were used. Models were run using the same MCMC

1. Code that appears in The American Naturalist is provided as a conve-
nience to readers. It has not necessarily been tested as part of peer review.
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methods. I validated models using posterior predictive checks,
simulating data with the estimated parameter values from
the posterior distributions for each fit, and comparing test
statistics (mean, median, 90th percentile) from the simulated
data with those estimated from the observed data. Model se-
lection was performed using the widely applicable informa-
tion criterion (WAIC) in the R package loo, which measures
model fit according to information theory, penalizing for
the number of parameters, and is consistent with a Bayesian
framework (Watanabe 2010; Vehtari et al. 2015).

Results

The 31 networks included in the meta-analysis measured
558 interactions among 114 unique species from 30 fami-
lies. Species in networks were overwhelmingly herbaceous
(23 networks) and perennial (22 networks). Study sites were
generally in the United States and Western Europe, though
there were several studies outside of this region (fig. A3).
On average, experiments lasted 13 months. Data for all
networks are deposited in the Dryad Digital Repository
(https://doi.org/10.5061/dryad.1sm06sp; Kinlock 2019). There
were no significant groupwise differences in any compari-
son (habitat, experiment setting, growth habit, or plant age)
for any metric, as 95% CRIs overlapped, though there were
nonsignificant patterns in many cases. All estimates from
the meta-analysis are in table S1 (tables S1, S2 are available
in the supplemental PDF).

Direct Interactions

Mean strength among networks where interactions were
measured relative to true control treatments (n p 15) was
significantly negative, meaning that species had competitive
effects on other species on average (grandmean [95% CRI]p
20:16 [20:23,20:09]; fig. 1A, open square). With a true
control, competition is defined as reduced performance in
the presence of another species relative to growing alone.
Facilitative interactions (mij 1 0) were observed in nine of
the true control networks, and among these, four networks
had mean strengths with 95% CRIs that overlapped zero
(fig. 1B). Among networks where interactions were mea-
sured relative to monoculture (n p 27), interspecific inter-
actions were not significantly greater or less than intraspe-
cific interactions, though on average, mean strength among
networks where interactions weremeasured relative tomono-
culture was negative (interspecific 1 intraspecific, 20.04
[20.10, 0.02]; fig. 1A, closed square). Individually, many
networks did have significantly negative (seven networks) or
positive (intraspecific 1 interspecific; four networks) mean
strengths (fig. 1B). Among studies where networks were cal-
culated using both a true control and a monoculture control
(n p 11), there were four cases in which communities were

competitive on average, but intraspecific competition was
stronger than interspecific competition. Networks measured
in greenhouses were more competitive on average compared
to those in fields, and networks of grassland species were
more competitive on average relative to networks with spe-
cies from other habitats. Networks with herbaceous species
hadmore competitive species on average than those includ-
ing woody species.

Indirect Interactions

Mean indirect effect among networks where interactions
were measured relative to true control treatments was sig-
nificantly facilitative (0.18 [0.07, 0.29]; fig. 2A). However,
mean indirect effect among all networks with interactions
measured relative to monoculture was not significantly dif-
ferent from zero (20.06 [20.17, 0.05]). Many individual
networks had significantly positive or negative mean indi-
rect effects (fig. 2B). Networks with grassland species had
more facilitative mean indirect effects than those with spe-
cies from other habitats. Among networks with interactions
measured relative to true control treatments, networks with
herbaceous species had more facilitative mean indirect ef-
fects compared to those with woody species, while the re-
verse was true for networks with interactions measured rel-
ative to monocultures.

Interaction Imbalance

Overall, interactions were imbalanced, meaning that the mean
difference in reciprocal RII was high relative to the maxi-
mum interaction intensity (0.39 [0.29, 0.49]; maximum im-
balance is 2.0; fig. 3A). Interactions in networks including
adults were more imbalanced than in networks of juveniles,
and interactions in networks with grassland species were
less imbalanced than with nongrassland species. Imbalance
was weaker among networks with interactions measured rel-
ative to a true control (0.26 [0.18, 0.35]). Looking at the per-
centage of interaction asymmetry in networks (where asym-
metric interactions are defined asmij 1 0 andmji ! 0), most
networks had a moderately high percentage of asymmetric
interactions, though some had a very high or very low per-
centage (three networks 1 90%, four networks ! 20% asym-
metric interactions; fig. S1 [figs. S1–S12 are available in the
supplemental PDF]). The posterior distribution for the grand
mean percentage of asymmetric interactions among networks
was flat and could not be reliably estimated.

Community Transitivity

Communities were transitive on average, with RI near 0
(0.01 [0, 0.02]; fig. 4A). However, many networks were not
completely transitive, and nearly all networks showed some
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variation in RI (fig. 4B). Networks with true controls were
less transitive (0.05 [0, 0.16]). Networks including woody
species were less transitive relative to networks with only
herbaceous species, and networks including adults were less
transitive than those with only juveniles. Networks with non-
grassland species were less transitive than networks with
grassland species.

Weighted Connectance

Weighted connectance among all networks was high (0.62
[0.58, 0.66]; maximum weighted connectance is 1.0; fig. 5A).
Weighted connectance was lower among networks with in-
teraction intensities measured relative to true controls (0.59
[0.48, 0.74]). Weighted connectance was higher in networks
with herbaceous species than in networks including woody
species, and weighted connectance was higher in networks

with grassland species compared to those with nongrassland
species.
For most networks with interactions measured relative

to monoculture, weighted connectance of networks of com-
petitive and facilitative interactions was similarly high
(competitive weighted connectance p 0:50 [0.44, 0.56],
facilitative p 0:47 [0.38, 0.54]; fig. S2A). However, for net-
works with interactions measured relative to a true control,
competitive weighted connectance was usually much higher
than facilitative weighted connectance (competitive weighted
connectance p 0:54 [0.08, 0.94], facilitative p 0:14 [0.01,
0.26]; fig. S2B). Networks with species from nongrassland
habitats, networks including woody species, and networks
from field experiments had lower competitive weighted con-
nectance and higher facilitative weighted connectance com-
pared to networks with grassland species or herbaceous spe-
cies or networks from greenhouse/garden experiments.
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Figure 1: Mean strength of interactions among and within all networks. A, Among-network mean strength estimated from meta-analysis.
Separate analyses were run using networks with interactions measured relative to monoculture controls (closed shapes, black lines) or true
controls (open shapes, gray lines). Models of mean strength were fit using the entire data sets (squares), as well as groupwise, by experiment
setting, habitat, growth habit, and plant age. Mean strength of interactions and 95% credible intervals (CRIs) are shown. B, Forest plot of
mean strength for each network. Study-level effect sizes for network metrics in Bayesian random effects hierarchical meta-analyses are
shown, with means and 95% CRIs. Estimates using networks with interactions measured relative to true control treatments are shown with
gray, open circles.
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Distributions of Interactions

In general, the distributions of in-strengths in networks
were skewed but not heavy tailed (figs. S7, S8). While the
Pareto distribution, a heavy-tailed distribution, was a good
fit for distributions of in-strengths and out-strengths in five
networks according to comparisons of mean WAIC, these
were not good fits based on visual assessment, the uncer-
tainty in WAIC, and posterior predictive checks (table S2).
In particular, the Pareto distribution underestimated the me-
dians of the empirical strength distributions, and both heavy-
tailed distributions overestimated the tails. The exponential
distribution also underestimated the medians of the strength
distributions. The exponential distributionwas a good fit to dis-
tributions of in-strengths in nine networks, the lognormal in
three networks, and the normal in two networks. There was
less of a clear pattern for distributions of out-strengths; the
exponential distribution was a good fit in five networks, the
lognormal in four networks, and the normal in three net-
works. Similar patterns emerged when looking at distribu-
tions based on strengths of interactions relative to true con-

trol treatments, although distributions were more symmetric
(fit well by a normal distribution; figs. S9, S10).

Discussion

Competition, measured as decreased performance in the
presence of another individual, was the predominant force
in plant communities, similar to what has been found in
other syntheses (Connell 1983; Gurevitch et al. 1992). How-
ever, the intensity of interspecific competition was not signif-
icantly greater than or less than intraspecific competition.
In several networks where competition was dominant, in-
traspecific competition was stronger than interspecific com-
petition. This is a potential stabilizing force in communities
that can promote coexistence by allowing species to increase
in abundance when rare. Also, facilitation, or increased per-
formance in the presence of another species, was observed in
many individual networks.While facilitation has been found
to predominate in stressful environments, for example, al-
pine or arid habitats (Bertness and Shumway 1993; He et al.
2013), I found evidence of facilitation even among species
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Figure 2: Mean indirect effects among and within all networks. A, Among-network mean indirect effect estimated from meta-analysis.
B, Forest plot of mean indirect effect for each network.
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fromnonextreme habitats such as grasslands. By using a net-
workapproach, Iwas able toquantify interactions at the com-
munity level(species’effectonthecommunityandviceversa),
rather than considering pairwise interactions independently.
A network approach also allows for comparisons of species’
competitive effects given certain characteristics, and I found
that, on average, species have less competitive effects on inva-
sive species than on native species and that nitrogen-fixing
species have more facilitative effects on other species relative
to non-nitrogen-fixing species (fig. S9).

I found interactions in these plant communities to be
somewhat imbalanced relative to the intensity of interac-
tions in the networks overall. This is similar to what has
been found in a review and a synthesis assessing the imbal-
ance of interactions in communities (Connell 1983; Keddy
and Shipley 1989). However, interaction imbalance varied
greatly among individual networks, some of which had more
balanced interactions. Also, the percentage of asymmetric
interactions, or interactions where species i benefits and
species j does not (mij 1 0 and mji ! 0), was below 50% in
eight of 27 networks. While imbalance describes pairwise

winner-loser relationships, transitivity describes winner-
loser relationships at the scale of communities. This rela-
tionship between imbalance and transitivity was supported
by the first principal component (PC) in a principal compo-
nent analysis of network metrics, explaining 45.6% of the
variance, which separated networks that were more imbal-
anced and transitive from those that were more balanced
and intransitive (fig. S8; mean loadings for RI p 20:36,
imbalance p 0:64). In general, these results suggest that
plant communities are transitive, similar to Keddy and Ship-
ley’s (1989) synthesis of eight plant communities and Godoy
and colleagues’ (2017) analysis of 816 interaction triplets in a
plant community. However, as with imbalance, several indi-
vidual networks were intransitive, which has, in one study,
been reported to be frequent in plant communities (Soliveres
et al. 2015). Intransitivity and facilitation, both community-
stabilizing forces, were associated in the second PC, which
separated networks that were more facilitative and intran-
sitive from competitive and transitive networks (fig. S8;
26.8% variance explained, mean loadings for RI p 0:42,
strength p 0:64).
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Figure 3: Interaction imbalance, measured as the absolute difference in interaction intensity for reciprocal interactions, among and within
all networks. A, Imbalance estimated from meta-analysis. B, Forest plot of imbalance for each network.

Plant Interaction Network Meta-analysis 647



Plant interaction networks have higher weighted connect-
ance compared to previously characterized ecological net-
works, which have approximately ranged from 0.02 in a
plant-herbivore network (Macfadyen et al. 2009) to 0.2 in
a plant-pollinator network (Power and Stout 2011). This is
partlybecauseof the small size and thedensityof interactions
in these networks, which results frommeasuring all combi-
nations of pairwise interactions that occur in the commu-
nity. However, strong weighted connectance also implies
more uniform distribution of interactions in plant communi-
ties. Competitive interactions were less uniform in networks
with species from nongrassland habitats, networks including
woody species, and networks from field experiments, com-
pared to networks with grassland species or herbaceous spe-
cies or networks from greenhouse/garden experiments.

Ecological studies of species interactions have classically
been conducted in grassland communities with herbaceous
plants, because these communities are well mixed, with lit-
tle vertical structure and relatively short-lived species. How-
ever, one might expect species in a grassland community to
be more competitive, with interactions more imbalanced

andmore transitive compared to those in other habitats, be-
cause when sharing limited resources in a relatively undif-
ferentiated habitat, small differences in resource uptake
lead to imbalanced interactions and, at the community level,
transitivity (Harper 1977; Weiner and Thomas 1986; Keddy
and Shipley 1989). Indeed, grassland communities were
more competitive on average and were more transitive rela-
tive to other communities, though interaction imbalance was
not different. Additionally, facilitation and intransitivity were
more common in plant communities including woody spe-
cies, adult individuals, and species from nongrassland hab-
itats such as forests, estuaries, or deserts. This suggests that
characterizing interactions in nongrassland communities
could reveal ahigher frequencyof structural features thatpro-
mote coexistence.
I found that strengths in plant interaction networks were

best fit by right-skewed, light-tailed distributions (i.e., expo-
nential). Real-world networks tend to be best fit by right-
skewed distributions, indicative of a few nodes with many,
strong interactions and most nodes with few, weak interac-
tions. However, some of the networks did have good fits to
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Figure 4: Relative intransitivity (RI), measured as the RI index, among and within all networks. More transitive networks (closer to zero) are
more hierarchical. A, RI estimated from meta-analysis. B, Forest plot of RI for each network.
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a symmetric distribution, a characteristic of randomly gen-
erated networks, possibly because experiments tend to focus
on the most abundant species in the community. Heavy-
tailed interaction distributions (e.g., lognormal, Pareto) are
apparent inmany typesofnetworks; power lawdistributions
provide a good fit to distributions in networks of airline
flights, scientific authorship (Barrat et al. 2004), andmutual-
istic ecological networks (Gilarranz et al. 2012).However, in a
primate social network (Kasper and Voelkl 2009) and in a
synthesis of trophic networks (Dunne et al. 2002), species’ ef-
fects were right skewed but not heavy tailed, similar to what
I found in plant communities. In a plant community, it is
probablyunlikely for very fewspecies tobeable to take ahuge
portionof resources froma limitedpool, even if thenetworks
includedmore species.Therefore, quantitative ecologicalnet-
works like plant interaction networks may be fundamentally
different from other types of networks that are not limited
by resources (Stumpf and Porter 2012).

I have developed a meta-analytic method to incorporate
within-study and among-study variation into network struc-

ture, and there was clearly a great deal of variation in all of
the network metrics I analyzed. There have been syntheses
of ecological networks in which the researchers assess struc-
ture across multiple networks in order to make general-
izations about a certain type of community (Dunne et al.
2004; Vázquez et al. 2005; Olesen et al. 2007; Gilarranz et al.
2012; Schleuning et al. 2014); however, these syntheses do
not incorporate interaction uncertainty/variability. Because
variation is intrinsic to ecological communities, ignoring var-
iability in syntheses of network metrics may give mislead-
ingly precise estimates.
This study, as with all ecological meta-analyses, is limited

by differences in experimental design, species composition,
and abiotic conditions. It is nevertheless useful and infor-
mative to combine studies to be able to generalize across
communities as well as to understand the sources of varia-
tion in effect size. Studies conducted in greenhouses, for
example, had more competitive interactions than studies in
gardens or in the field, although their networks were not
more transitive or more imbalanced. Network structure
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Figure 5: Weighted connectance among and within all networks. A, Weighted connectance estimated from meta-analysis. B, Forest plot of
weighted connectance for each network.
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proved to be relatively resilient to different abiotic condi-
tions, including nutrient availability and temperature; and
in cases where the same species was included in different
networks, species’ effects on the community were some-
times, though not always, consistent across different studies
(figs. S10, S11).

How well the networks in this study approximate plant
communities in nature is unclear; in particular, the plant in-
teraction networks represented here are small, with 10 or
fewer species. It is challenging tomeasure plant interactions
in larger communities, because the number of experimental
treatments required increases factorially with species rich-
ness. To increase network size, interactions could be esti-
mated from observational rather than experimental data,
though there are trade-offs with that approach, for example,
assuming that interactions alone drive the patterning of
species as well as assuming that the type of interaction
(competition or facilitation) is known a priori. In this study,
there were no strong correlations between network size and
mean strength, indirect effect, or imbalance (all Pearson’s
r !50:3).However, intransitivitywasweaklypositively cor-
related, and weighted connectance was weakly negatively
correlated with network size; therefore, includingmore spe-
cies could influence network structure. Future studies char-
acterizing larger networks in plant communities could pro-
vide additional evidence of potential stabilizing forces that
promote coexistence (e.g., intransitivity), though some evi-
dence of these forces was also apparent in the small networks
analyzed here.

Conclusion

I reinterpreted plant communities from the literature and my
own fieldwork as networks of competitive and facilitative in-
teractions and synthesized metrics of network structure while
accounting for interaction variability. Plant interaction net-
works were competitive on average, and interactions and
communities were characterized by patterns of clear win-
ners and losers, as interactions were imbalanced and com-
munities were transitive. However, facilitative interactions,
balanced interactions, and intransitivity were present in some
communities, particularly communities that included woody
species and adult individuals. Networks with more intransi-
tivity, facilitation, and balanced interactions separated from
transitive networks with more competition and interaction
imbalance. The distribution of strengths in plant communi-
ties was skewed but not heavy tailed, a pattern similar to
other ecological networks with limited resources but dif-
fering from many other real-world networks. By synthesiz-
ing structural metrics of multiple plant interaction com-
munities using meta-analysis, it was possible to make broad,
quantitative generalizations about the nature of interactions
in plant communities.
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“The cacti form a most conspicuous feature of mountain and desert. By far the most conspicuous and remarkable form is the Cereus
giganteus, locally known as the ‘saguara’ cactus. . . . It is an upright fluted or ribbed pillar, each rib covered from bottom to top with a mass
of sharp, straight thorns.” From “Botanical Notes from Tucson” by Jos. F. James (The American Naturalist, 1881, 15:978–987).
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